Abstract

We offer a formulation of first-order logic
that is diagrammaric in nature, retains
a basic part of C. S. Peirce’s own graph-
ics, renders quantification both graphical
and easily readable, and seems a natural

« . »
approach to what lies at or near the foun- Betﬂg rﬂpblc g

dations of his science of Semeiotic. The

approach is in agreement with Peirce’s prop- An A[terndtive
ositional graphics (Alpha EG), but different

in its treatment of quantifiers. Our syntax Formuldﬂbﬂ

is formulared with the “atoms” of the usual

predicate calculus given a fine structure in Of Predicdtg

terms of a bonding operation on monadic,

dyadic, and triadic building blocks. A suit- C a [C% [u ()
able semantics is introduced, based on rela-

tive product and culminating with a proof  [\rerDISCIPLINARY
of a precise formulation of the famous Sgyinar on PEIRCE!
Peircean Non-Reduction Thesis (NRT).

(In particular, in Theorem B', we docu-

ment precisely the quantificational aspect of

NRT: quantification is a multivalent opera-

tion, with full expressivity occurring only

for valencies 2 3.)The principles NRT and

RCT (Relational Completeness Thesis) are

implicit in predicate logic, whatever form it

might take; bur their explicit presenration

has generally been either neglected (classical

predicate calculus) or attended by techni-

cal complexities (Peirce’s Beta EG, Burch’s

PAL). Here, the proofs are both explicit and

relatively simple. Other contexts in which

our “molecular” treatment of relations may

be advantageous will be indicated.
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Preface

There are at least a few plausible grounds for our use of the term Beta in
our title, notwithstanding that there is a key departure, in our frame-
work, from classical Beta Existential Graphs (8 EG). The situation, in
brief, is as follows.

The reader accustomed to Peirce’s graphical development of quan-
tificational logic may, if desired, continue to think of formulas (“be-
tagraphs”) being written on a “sheet of assertion.” We rerain the “cur”
notation (a surrounding oval) for negation and continue to represent
conjuncrion simply by juxtaposition of diagrams. However, on the
side of departure, we dispense with the sometimes problematic “lines
of identity” of classical Beta and instead represent a quantification
by a “bouquer” of lines leading from a point outside the “open” (i.e.,
quantifier-free) part of the diagram inward to the various “open hooks”
(= free variable spots) to which the quantifier is to apply, the external
point in question being labelled by the object label (= variable} under
quantification.

Occasionally an open formula (i.e., an unquantified betagraph)
upon which we wish to focus special attention will be enclosed within
a rectangle (as opposed to an oval, which is reserved for negation); lines
of quantification, if any, will enter such formulas from outside such en-
closing rectangles. (This use of an enclosing rectangle to say “Here is a
formula you might wish to regard carefully” will also appear extensively
in the latter part of Section Three, as an abbreviative device.)

We will sometimes present an example in betagraphic form and then
give its standard linear-notarional counterpart; the reader may then
compare the two notations. It may happen that “ease of reading” is no
greater in the betagraphic formulation, but we contend that there are
cases in which it definitely #s greater there; this will be particularly ap-
parent at a certain point in Section Three. At other times, our injection
of linear notation (again, we cite Section Three) is simply to save space.

A key feature of our notation is the “molecular” representation of
relations, based, in close accord with Peirce’s own ideas, on a bonding
operation applied repeatedly to relations of arities one, two, three. We
think such representation may well be of descriptive utility in a vari-
ety of contexts in which the formalism might have application. What
might such uses be? One possibility currently under consideration has
to do with representation of neuronal activity at various levels of mi-
croscopic detail. The study of interpersonal networking phenomena is
another area in which the “molecular” approach appears to offer de-
scriptive value. {Respecting both topics, note the concluding paragraph
(4) at the end of the paper, where some remarks on Semeioric may also
be found.)

[eshould not be supposed that we seek to offer here a path to a clearer
vision of Peirce’s own graphical system Beta; on the contrary, our whole



emphasis is on providing a strongly diagrammatic approach that does
not involve the intricacies of the Peircean graphs, vis--vis quantifica-
tion (or, similarly, the rather formidable notational apparatus of Burch’s
algebraic system PAL (Burch 1991), which in addition to being nora-
tionally somewhar dense is, in and of itself, non-diagrammatic). In par-
ticular, although the theorems in Section Three are not, in substance,
new, we believe that we have succeeded in reducing the notational and
procedural complexity required for the proofs of these results.

Moreover, it should be noted that Geraldine Brady and Todd Trim-
ble have recently shown, for those wishing to see how Peirce’s graphs
fare when operated on by the contents of a powerful present-day math-
ematical toolkit, that first Alpha, then Beta, and perhaps Gamma EG
as well, can be formalized, analyzed, and characterized in category-
theoretic terms. Readers wishing to look into that development should
probably start with their analysis of Alpha, the purely propositional part
of Peirce’s graphics (Brady and Trimble 2000). As will be clear in what
follows, we here aim far below that level of abstract generality, seeking
simply to put together a diagrammatic form of first-order predicare
logic that (i) retains at least the propasitional format of Peirce’s graph-
ics, along with his triad-based view of relations, (/i) is comparatively
easy to manipulate, (#7) permits a fairly transparent derivation of the
celebrated “Reduction Thesis” in full semantic dress, and (7v) appears
to offer descriptive utility in a variety of contexts.

Part I: Syntax

Our intent here is not to make Peirce’s original system of Beta Exis-
tential Graphs (hereafter ‘Beta’ or ‘8’), viewed as a graphical version of
first-order predicate calculus, easier to read and manipulate than many
people have found it to be in its recent appearances in the literature
(Burch 1991, Correia 2008, and Shin 2002, for example}, not to men-
" tion in its earliest form(s) in Peirce’s writings. (Contrary to received
opinion, he did, in a widely consulted location, publish a solid account
of both Alpha and Beta EG: see Peirce 1902.) Instead, we wish to seri-
ously modify the notation of the quantificational core of Beta without
disturbing the notational form of its propositional subsystem Alpha.
The resulting system remains strongly diagrammatic and not wholly
“un-Peircean,” yet (we believe) reasonably easy on the eye as planar dia-
grams go. Above all, it will be a system in which the interpretation of a
given formula (well-formed diagram) is generally rather easy.

The ground-level relational framework of the formalism will be set
up in such a way that the resulting system, when furnished with an
appropriate semantics, readily exhibits the “Relational Completeness”
[RCT] portion (see our previous paper, Interdisciplinary Seminar on
Peirce 2011) of Peirce’s so-called Reduction Thesis, as well as accom-
modaring an appropriate version of the non-reduction [NRT] portion
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of the thesis. (We are here using the narrow but precise sense of Peirce’s
term ‘Reduction Thesis’ as meaning RCT + NRT relative to a particular
interpreted formal system.)

Of course, any formulation of such a system will become progres-
sively more irksome to read as its expressions become progressively
more complex; but we seek to arrange matters in such a way that at
least its two and three-quantifier “graphs,” a subclass of considerable
importance, are easy to work with.

1. The “Alphaber.”
1.a. We shall have lists

L I = 20 &9 ae = o889 aese a0
l! 2! 3) arey ? 33 3! eeey I) b1 3"0

of monadic, dyadic, and triadic predicate (or relation) symbols, re-
spectively. Specific meanings will subsequently be attached to ¢, *¢,
and ee¢ , ; otherwise, all these symbols are to be regarded as variables.

1.b. We shall have a list x, x,, x,, ... of unspecified (i.e., uninter-
preted) object labels (= “individual variables”), and a list ¢,, ¢,, ¢, ... of
Jormal constants, the latter to be used for naming specific objects in
some “universe of discourse.” We shall use letters x, y, z, etc. to denote
the presence of an (unspecified) object label, and letters 4, 5, ¢, etc.
to denote the presence of an (unspecified) constant. (Our displayed
examples will be simple enough to ensure that the front and back ends
of the English alphabet do not collide.) Wherever distinct letters x, y,
z, etc. (or distinct levters a, b, ¢, etc.) occur in a given diagram, it is to
be understood that they signal the presence of distinct object labels (or
distinct constants).

2. Well-Formed B-Graphs (WFBGs).

Most of the constructional and notational complication in what we will
do involves our description of the lowest-level formulas for the system
we will set up: these low-level formulas are what we shall term “mol-
ecules.” They correspond to the “atomic formulas” of a standard version
of predicate calculus; here, however, we apply the term aromic only to
monadic, dyadic, and triadic relational forms, with relational forms of
higher arities (i.e., valencies) to be built up from these three types by a
procedure to be called bonding. (Care will be taken to specify the bond-
ing procedure in such a way that any “molecule” can be decoded into its
constituent “atoms,” with discovery of the order in which the bondings
were done.)



2.a. Atomic Well-Forned B-Graphs (atomic WFBGs). o
The following graphs (and only these) count as atomic: 3
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Figure 1.

{Here, indices adjacent to bullets simply signal enumeration (7 = 0,
1, 2,...) of individual atoms of the given form. Also, in any onc of
these forms, the object labels and constants are indicated generally,
I opet

not specifically. So, for example, aTi should be understood as a
shorthand reference to all the countably many triadic atoms that have
distinct object labels on their horizontal hooks and some constant on
-~

the vertical hook, e.g., J" J
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In Figure 1, the lines bearing letters are referred to as “hooks.” A
hook is gpen, and eligible for bonding, if it bears an object label (n0z a
constant) and has not already been subjected to bonding or quantifica-

tion (which is certainly the situation for any object-label-bearing hook 141
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occurring in an atomic WFBG in Figure 1); otherwise, the hook is
closed and ineligible for bonding,

2.b. Larger WFBGs from smaller ones, part 1: “molecules.”

Let @ be an atomic graph. By the valency, v(@), of G we mean the num-
ber of its open hooks, which can be 0, 1, 2, or 3. By the adicity, a(@),
of G we mean the number of mutually distinct object labels occupying
its (open) hooks; again this can be 0, 1, 2, or 3. Clearly, however, it is
always the case that (@) 2 2(G). Some examples:

For G= -l—’ , (@) = a(@) = 1;

ForG= &= ,0(G) = a(G) = 0;

ForG- Xee ,v(G)=a(G) =2
ForG= X ee* ,2(G)=2anda(G)-= 1;

For G= x_.ch._z , V(@) = a(@) = 2;

For G= E'*Tl‘—x , (@) = 3 and a(@) = 1;

erc.

The definitions of valency and adicity will extend straightforwardly
to molecules in general.

Now, in any relation, at least as far as standard logical formalisms
are concerned, the related entities are arranged in a definite order: first
element, second element, and so on. In the case of atomic WFBGs, this
order can be read from the graph as going counterclockwise through
the hooks starting from the one pointing to the left. As we shall soon
legislate, pairs of molecular WFBGs, so far consisting just of atomic
ones, can be bonded at a pair of open hooks, one from each molecule,
that bear the same object label; and, as we shall also legislate a little fur-
ther on, a hook bearing an object label may be extended to become a
“line of quantification” (and thereby lose its open status).

2.0.(1). Bonding of pairs of atoms.

Let @, and G, be distinct atoms. (Separate copies of the same atom
count as a distincr pair.) Let x be an object label, and let A, be a hook
of G, that bears the label x, i = 1, 2. Then we may bond G, to G, along
h,, h, an operation that fuses (“welds"?) those two hooks into a segment
Joining @, to G ; at the same time, we (1) detach x from h,i=1,2and
(2) tag the bond segment with the notation 6, x, «—, where the arrow
points from @, to G,. (We will explain shortly why we put the number
6 in our tag.)



Notice that we said we are bondmg @, r0 @,; this wording signals a
definite order of operands; that order is in turn sngnaled by the direction
of the arrow. An example:

X .6: (i .._W
v
z

This “says”: the dyadic atom on the left, indexed i, is bonded to the
triadic atom on the right, indexed j, at the common label .

As we shall see, this way of doing the bonding will enable us to
reconstruct the development of the resulting molecule to see “where it
came from.”

2.b. (ii). Molecules in general.

Definition 1. By a molecule, we mean the result of a finite sequence of
bondings of distinct graphs (two separate copies of the same graph, we
repeat, may be countred as distinct), starting with a pair of atoms, where
each bonding occurs between hooks occupied by the same object label,
and where each bond segment bears an appropriate tag that expresses
(@) the point in the bonding sequence at which that particular bond
occurs, (#) the common object label that was borne by the now-bonded
hooks, and (¢) the order of the bonding, that is, “what was bonded to
what,” at that point in the process.

For the sake of (a), we need to carefully define what we shall call the
bonding number. Thus:

Definition 2. For any molecule G, we deﬁne its bonding number,
#@, as follows. If @ is an atom, #G := 1 (* := ' means “... is defined as

). Now suppose @, and @, are molecules for which #(@,) and #(@,)
have been defined; and suppose we bond G, w0 G,, whlch we can in-
dicate in abbreviative notation by G, 1B G We define the bonding
number #(G, B Q,), which is the number 1 to be placed on the bond
segment, thus #(G B Q) := 2 *% 3%, (Notice that if @, and G,
are atoms, this number will be 6, consistent with what was indicated
earlier.)

Definition 2 can casily be formalized as a definition of #(Q) by re-
cursion. Here is an example of a two-step molecular construction, with
the “reconstruction™:

Lo
o

To reconstruct this, just look for the largest number on a bond seg-
ment; that signals the /st bond that was made, so we break off the
molecule at the tail of the arrow and then separately reconstruct both
it and the one at the head of the arrow. Here is whar the “reconstruc-
tion tree” for the molecule of this example looks like, where we use the
symbol “©” to denote each node of the tree (Figure 2 should be read

2 36;%" 6,!.-—
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from the first bondings at the bottom to subsequent bondings as one
goes upwards in the diagram):

Figure 2

Next, we observe that it can happen that a sequence of bondings
completely closes up all available open hooks. A simple example:

i2'3‘»xa". .iﬁr!l = .k
€Notice that this example illustrates the fact that we do not actually care
whether the hook on a monadic atom emanates from its left or its right
side.) We shall call such a graph a nullecule (Peirce called such graphs
medads). When it comes time to do semantics for our formalism, in
Pare II, it will be explained why nullecules (with or without constants)
are to be regarded as senzences.

Remark. 1f a molecule is not a nullecule, how should we order its
hook-occupying letters? (We have already indicated an ordering con-
vention for the letters appearing as atoms.) The convention thar is most
convenient relative to what we do in Part II (and that is by no means
unnatural in its own right) is as follows: suppose molecule @ has letter-
bearing hooks b, ..., 4, ..., b, with its lecters in that order, and molecule
@, has letter-bearing hooks £, ..., £, ..., &, with its letters in that order,
and @, is to be bonded to G, at the respective open hooks 4, £, each of
which bears the object label x. Our convention is that G, =1 @, should
be read with £,...., £, 4, ..., By By s By by ooy K as the order of it
letters (object labels and constants, if any). Thus we read the remaining
letters of Gl (if any) as being “wedged in between” the remaining letters
of G2 (if any). When we come to the question of interpreting molecules,
in Part I, this convention will be seen to be tailored to our use of a
certain generalization of the notion of the relative product of relations.

To conclude subsection 2b(ii}, we note that there is no harm in
building molecules with vertical as well as horizontal “arms,” if thar is
found to be convenient. As an example of doing this, let us say that @,

z v . 6,u,—

Z s9e— oo Yo o9e Y-
is xT‘ w"' and G, BB Qs yT"' wT’ YT’ ,and




we wish to bond G, 0 G, B G,. In the interest of saving space we
write:

6,u,— 2°35v,— z

—-.
| 26.31-3',‘,’_.
.T. .Tl OT.—
10 3 2
Y had Yy

Bur wait: that wasn't the only possible bonding of G, 0 G, B G ;
could have used the hooks bearing z, or those bearmg w. We leave it
to the reader to construct, as he or she sees fit, those alternative bond-
ings. (In the case of the w-bonding, there is little choice but to go both
vertical and “upside-down,” and if a w-bonding were to be followed by a
z-bonding, this would introduce a /oap; however, this latter situation—
first w then z—is not allowed: 2 molecule is not permitted to bond with
itself, although it is permitted to bond with a copy of itself. And with a
copy, we would avoid a loop.)

2c. Open formutlas.

A high percentage of the price for “going graphical” with basic logical
formalism has now been paid: it’s clear that the “molecular” construc-
tion of higher-adicity relational frames from ones of lower adicity, spe-
cifically, from ones of adicity < 3 (and in fact valency < 3), as oudined
in the preceding subsection, ultimately results in sprawling, complex,
Tinkertoy-like* diagrams; indeed, it gets that way fairly early on in the
adicity hierarchy. A simple, workable convention for abbreviating such
diagrams (other than the “G, B Q,” convention, which is handy but
loses far too much mformauon) would certainly be welcome. The ad-
vantage of molecules is that they explicitly show substructure in, say,
a 4-, 5-, or G-ary relation. From here on, in any case, the syntax gets a
lictle less rococo.

Definition 3. Conjunction. In Peirce’s set-up, conjunction of
graphs (“and”) is indicated simply by positioning them next to each
other on a pre-arranged surface known as the Sheet of Assertion. We
shall follow this procedure, in that we indicate conjunction simply by
juxtaposition of the WFBGs to be conjoined.

Definition 4. Negation. We adopt the usual practice of Peirce and
his followers (it being the pictorial hallmark of Alpha, the propositional
part of Beta); the negation of @ (i.e., “nor @) shall be denoted by the

inclusion of G in an oval, thus:

L3
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Definition 5. The gpen WFBGs are the members of the smallest
class containing all molecules and closed under the application of con-
junction and negation.

Non-exclusive disjunction is, as usual, readily definable from con-
junction and negation: given any two WFBGs G, and @,, the graph

will count as a WFBG and clearly expresses that at least one

of @, G, is asserted rather than denied.

We now have the “Boolean” part of our formal system and need
only to add quantifiers to get the whole set-up, syntactically. (For predi-
cate calculus, of course, we shall need to specify axiom schemes and
rules of inference.)

2d. Quantifiers.

Fitting quantification in with the propositional part of logical beta-
graphs in a readily readable way has been a problem from Peirce on-
ward (e.g., quarrels over “lines of identity”: what exactly are they? how
exactly do or should they interact with negation-generated “levels,” or
“areas” of cuts, etc.).* In dealing with this issue, we shall make no at-
tempt to preserve anyone’s “original intent” or make any conjecture
concerning such intent. We will instead proceed with an eye (we hope)
to clarity. To start, we introduce a special notation for the existential
quantification of an object label associated with an open hook. If the
object label is x, the notation in question will be #£. Likewise, there will
be a special symbol for the universal quantification of x, namely, % If
more than one object label (say, y in addition to x) is to be quantified
in a given WFBG, we need to be careful about the order of quantifi-
cation: existential-existential and universal-universal present no issue,
but clearly, existential-universal and universal-existential must be dis-
tinguished from one another. There are at least two ways of making
the distinction: first, each time we add a new quantifier, we can first
double-negate the graph to be quantified and then place the quantifier
symbol outside that double oval. Or, second, we can simply use identify-
ing parenthetical tags on the quantified object labels. Thus, if the object
label to be quantified is, say, x,, and we are about to make a third quan-
tification, say existentially for x,, in the WFBG under constructlon we
could signal the quantification by “%,(3),” instead of simply “#,.

The objection to the first method is twofold: first, we dont particu-
larly like double negations that function as barriers, like parenthesis-
pairs, and sometimes cannot be deleted without destroying the
well-formedness of the graph; and second, burgeoning thickets of irre-
movable double ovals can make a graph difficult to read, and that is the
very difficulty we are trying to minimize. So we opt for the numerical
tag approach: £ (n), % (n). Having made this choice, we can state the
following rule:



Rule for forming larger WFBGs via quantification.

1. If G is an open WFBG, and if for some object label x there isin @ at
least.one hook with xartached to it, then G' is again a WFBG, where @'
is obrained from @ by (a) extending each such hook to a common point
outside @ at which they (the extensions) all meet, this point then being
marked with either a tag £ (1) or a tag % (1), and () erasing x from each
such extended hook, which is now called a /ine of quantification and is
declared closed. If the tag is #(1), the quantification is existendial; if %
(1), it is universal.

2. Suppose G is a WFBG containing quantifier tags £ (») and/or
#{(n) with 1 < » < k. Then, if there is in G at least one open hook bearing
some object label y, let the occurrences of y in G be jointly quantified
to produce G' as in Parc 1 of the rule, with the rag for this quantifica-
tion being either § (£ + 1) or 7 (4 + 1); then @' is a WFBG with an
outermost quantifier thac is existential if the tag is # (£ + 1), universal if
itis y (k+1).

Note: Quantification reduces both valency and adicity. After quan-
tifying the open-hook object labels in a WFBG, we have a graph of
valency = adicity = 0; such a WFBG is termed a sentence. (As remarked
earlier, molecules with no open hooks also count as sentences.)

Here are some simple examples illustrating use of this rule:

(i) Suppose @ is the open graph

X
. . . . . w —
of rotal molecular valency 3, adicity 2, which is designed to assert: “ i
X
or not-i ." And suppose we want to existentially quantify the object

. (13 2] X y ”
label x, to assert “there is an x such that “ *T or not [ e ].
Via part 1 of the quantification rule, we get the following WFBG:

o—

j

x(1)

x y
(ii) Suppose @ is % all by itself, and we wish to form from ita

Yy
WEBG that asserts “for every x, there is a y such that e Applying

Part 2 of the quantification rule, the desired graph is, X®—*% )

which seems easy enough to read.

Now, finally, we can specify the class of all WFBGs:

Definition 6. The class of WFBGs is the smallest class contain-
ing all gpen WFBGs and closed under negation, conjuncrion, and
quantification.

[ 13
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Thus, for example,

z 7(1)
D ED) o

is a perfectly good WFBG, designed to assert: “for every z, it is not the

X z x x ¥y
case that we have both J,Tk and either i or i,

3. First-order Predicate Calculus, Molecularly Based

It is now straightforward to unroll first-order logic, according to some
chosen axiomatic/inferential format, in the notational framework just
established. Some Peirce scholars may not like this approach; it is cer-
tainly not Peirce’s approach, since he worked from his own ideas about
logic and of course had no modern formulations at his disposal for
comparison. However, being pragmaticists, we shall risk the complaint.
Again, our primary concern is simply to have a graphical system that is
easy to read and work with but not entirely “un-Peircean,” a goal that
naturally calls for changes of some sort.

The following conventions will facilitate the discussion:

(i) The predicate symbol o= is henceforth reserved as a label for
the entire domain of discourse, in a given universe of discourse to which
we may apply our system of WFBGs; the class of such universes will
be formally specified in Part II of the paper. Moreover, the predicare

x ¥y
symbol "*%™ is reserved as a label for the ordinary binary identity

relation on any given domain. (Out of long habit, we might sometimes
lapse into referring to that relation by the symbol “=”.} And finally,
X

X epe?
we reserve the predicate symbol YT for the so-called “teridentity”
relation that would be written in standard notation as x = y & y = z.
In our notation, we can equivalently express teridentity by the WFBG

oot Leet

; bur note, in connection with later consider-
ations, that this latter graph has valency 4.

(ii) By the word “serm” we shall simply mean either an object label x
or a formal constant . (Since our alphabet contains no function symbols,
our “terms” need be no more complicated than thar.)

(iii) If che last step in constructing a WFBG @ was to quantify by
%(n) or % (n) the x-labelled open hooks of a WFBG 1, we shall denote

@ by &awwww H or (m)wwwwawt, respectively, indicating thereby thar
the quantifier is applied to 4/l the open-hook occurrences of x in H.

(iv) In stating an inference rule, if we wish to say that a WFBG H
may be inferred from a WFBG @, we shall write G//H.




(v) To indicate that a WFBG i follows from a WFBG @ via our
axioms and rules of inference, we write @=H; and to indicate that G and
H are logically equivalent (i.e., that each so follows from the other), we

write @=H (or H=0Q).

The RULES of INFERENCE thar follow represent a slight modifi-
cation (by enlargement) of the inference rules for first-order predicate
logic found in Mendelson 1964, Ch. 2 § 3, where only the middle two
of the following four rules appear:

R1 (“Double Negation”). For any WFBG @, we have®

" Gand G ! .

R2 (“Modus Ponens”). For any rwo WFBGs G and 11,

(Observe, in connection with R2, that is the form

taken in our notation by the assertion “G materially implies H1.”)

R3 (“Generalization”). For any WFBG @ and any object label x that

is attached to at least one open hook in G, we have G // 2w,
#-1 being the number of quantifiers already in @.

R4 (“Change of Variable™). Suppose H is a WFBG arising from a
WEFBG G by replacing an object label x occurring in G at all of its oc-

currences’ by a different object label y such that y has no occurrences in
@. Then H//G and G//H. (And so we may write @=H.)

Next, the AXIOM SCHEMAS.

We begin with the schemata for the “Alpha part of Bera,” i.e., a
graphical version of propositional calculus. Again, we do not follow
“classical Alpha” other than notationally; our axioms are a complete set
of three as in Mendelson 1964, ch. 2.

Al. For any WFBGs @ and H, the following is an axiom:

@

‘This asserts: “If G, then (if Hi then G).” By R1, it is logically equivalent

to , which is obviously a valid (i.e., true under all inter-

pretations) WFBG.

-~
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A2, For any WFBGs G, H, and K, the following is an axiom:

This asserts: “If (@ implies (H implies R)), then ((G implies H) implies
(@ implies K)).” Again using R1, this becomes

which is about the extent to which this one simplifies.?
A3. For any two WFBGs G, H, the following is an axiom:

This asserts: “If not-G implies not-H, then ((not-G implies ) implies
@).” Simplification via R1 turns this into

©@EDE

It is known that from A1-A3 one can derive all rautologies, using
Rl and R2°

The rest of the axiom base is as follows. For A4, we shall need the
following convention: an objecr label y will be said to be free for an ob-
ject label x having open-hook occurrences in a WFBG @, if and only
if y = x, or y has no occurrences of any kind in G. (Note that this is not
the way “free for x” is defined in standard formulations; we define it this
way here on account of “molecular considerations.”)

A4. Given any type of WFBG @, any object label x, and any term,
t, where x has at least one open-hook occurrence in @ and where if 7= y

then y is free for x in @, the graph o ) is an axiom, where @'
results from @ by replacing each such occurrence of x by ¢. (Note: # may
be x, in which case G' = G.)

This asserts: “If for all x we have @, then @ holds in particular for £.”



AS. If @, H are WFBGs such that x has no open-hook occurrences in
@, then the following WFBG is an axiom:'®

[

This asserts “If for all x we have that G implies H, then G implies
that for all x, we have 11.” Again, R1 yields a bit of simplification:

(D @

AG. Let G be a WFBG containing a term ¢, that is present on at least
one hook in G; and let £, be a second term such that ¢, is a constant if
t, is a constan, and if ¢, and ¢, are both object labels and ¢, is different
from t,, then ¢, is free for t,in'G. Let @' be the resulr of replacing ¢, by
t, everywhere that #, occurs on a hook in G. Then the following WFBG
is an axiom:

i(n

sNNdJED) JIEDIPa] JO UONT[NWIIO, danewdl[y uy : siydeideiag,

x ¥
(Recalling that we have reserved ' for the ordinary identity rela-
tion, A6 simply authorizes “substitution of equals for equals.”)
Finally, we include the usual equivalence-class axiom scheme gov-
erning the identity relation.

A7. The following WFBGs are axioms:

.

We now have whar is needed for a diagrammatic treatment of first-
order predicate logic that is at least superficially “Beta-istic,” and it is
time to attach interpretations to the synrtactical skeleta. (To repeat: we
have deliberately short-circuited the orthodox approach of working to
get predicate logic out of Peirce’s own set-up, whatever exactly that was;
that approach is nicely exemplified in Roberts 1973 and Shin 2002.) 151
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Postscript to Part I
(1) Beta graphs, as typically discussed, feature lines of identity; and
these, as has often enough been pointed our, have to do with quan-
tification.! Our preference here is to work explicitly with lines of
quantification, adorned with enough notation to make their reference
unmistakable. Beyond that, we have simply hijacked Peirce’s notational
conventions, and we have replaced the usual “atomic formulas” of stan-
dard first-order systems by “molecular” diagrams so as to give a differ-
ent physical form to the syntax of predicate calculus. That predicate
logic can be drawn out of “classical Beta” has been pointed out by vari-
ous authors (Burch, Roberts, and Shin, to mention a few). What the
preceding pages offer is nothing more than a particular way of looking
at one of these systems through something like the eyes of the other.
(2) A word about “vacuous quantifiers.” The usual predicate calcu-
lus statement of R3, for example, as it is found in Mendelson 1964,
makes no reference to quantifying free occurrences of x (open-hook oc-
currences in Beta-istic terms); attaching a quantifier to a formula that
contains nothing for it to act upon is routine in the linear-noration
environment. This could be accommodated in the set-up of the present
paper, but at the expense of complicating the syntax without any obvi-
ous compensatory benefits. For instance, we could enlarge the class of

WFBGs to include such graphs as

6 eaet
21y~ cz]i

and

=\
x(1)

A rule {one might call it a “rule-let”) for removing vacuous quantifiers
could be added. But our preference is simply to avoid them.

(3} Should bonding across negation be permitted? (I.e., should one
molecule be permitted to “swim across the boundary” to join another
one?) There are two ways of looking at this. First, we could interpret

the resule as ; but this gives us nothing not already there if

we view the bonding as preceding the negation. Or, we might construct
a molecule to house the complement of whatever actual relation G, is
naming in some chosen interpretation of the formalism (as we shall see
in Section II can be done) and then bond G , to that molecule. That
might be the better option if we have committed ourselves 1o a fixed in-
terpretation of the formalism; but we probably don’t want to make such
a commitment when we are just doing syntax. So we shall agree not



to look at the marter that way. Finally, to “bond through a quantifier”
would involve some rather onerous restrictions. So we shall agree (as is
implicit in the preceding pages) that “bonding stops at the molecular
horizon.”

Part IT: Semantics
A key tool for our definitions will be the operation of (generalized)
relative product. As noted by Herzberger (to whose 1981 paper we are
strongly indebted), this operation, while apparently not just acceptable
to Peirce, but in fact exploited by him as a construction procedure, has
one shortcoming; if the universe of discourse is finite, relative product
cannot in general be used to reconstruct an (m + n)-ary relation from
a splitting of that relation into an m-ary “left half” and an #-ary “right
half,” since there are in general too many elements of a relation in a
finite domain for these “halves” to be tagged in a one-to-one fashion by
elements of the domain. This prevents us from using the relative prod-
uct procedure to verify the Relational Completeness portion of Peirce’s
“Reduction Thesis” in the case of a finite universe.!> Qur way of out-
flanking this obstacle will be to define our universes in such a way that
they are all infinite, with a given “base set” (finite or infinite) extended
by the set of all concatenations, §,*6,...%8 , of elements (repeats al-
lowed) of that base set. (Concatenatlon is a legmmate procedure for a
“Peircean” semantics if relative product is, since it is in fact involved,
along with cancellation, in the formarion of relative products).

Whatever we wish to say about a finite base set D = {3,,..., §,} can
be said within this wider context. (E.g., to say “for all x, such and such
holds of x,” we would simply relativize the quantifier, saying “ifx =8,
orx=90,or...orx=§,, then such-and-such holds of x,” where ‘ ‘such-
and-such” has also been relativized—if it contains any quantifiers—to
{8,, ..., 8,}; and of course all this can be writren in our graphical for-
malism.) It will be shown in what follows that with this understanding
about universes, our syntactic rules concerning molecular formation
readily accommodate the use of relative product to produce higher-
adicity relations from those of adicity < 3.

Definition 7. By a domain of discourse we mean a set of the form
D = D, U D,*, where D, is a nonempty set and D * is the set of all
concatenations 5,*..."‘6}.,]'2 2, where {6, ..., ﬁj] cD

Definition 8. Let D be a domain of discourse. By a universe of dis-
course over D we mean a sequence

UD = <D’ 2D, 2 DxD, veey 2Dx..xD.‘|’thi.’m':]’ >,

where, as usual 2° is the set of all subsets of D, 27*P is the set of all
binary relations on D, and, in general, 20 * - *Dnimsl jg the ser of all
n-ary relations on D,

i@
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‘The next definition is, of necessity, a long one; there are many cases
to be dealt with.

Definition 9.'> Let U be a universe of discourse with domain D. (D
being understood, we can write simply U, instead of U_.) By an atomic
U-interpretation we mean a function I, acting on constants and atoms,

and taking U-values as follows:

(1) I,(c) = some element of D, for each constant ¢;
(2)

Iu(.l_x) = D H

Iu(.l_c) = {Iu(c)l H

I(e—>)€2%i22;

ol gt
1 y 12 4.

{3, otherwise

(3) 14
1, eeY)=1,(XeeX)={(55): 5D} ;
I (Xee—S) =1 (SweZ)={l,c);
I(—ee—=) = ({I{c), 1 (D) ;
l(Ceed)=1 (3 eet)-
(1IN}, if 1,(c)=1,(d) } _
@, otherwise '
Iu(‘_..i_”jl €2PP ix2;
I(EeeX) = [(5.3): (6.8) € I (X-wed )}, i22;
[(X-ee—<) = {5eD: (6,[u(c))elu(‘—ui—y)], i22;
[, (o0 = [8eD: (I, (c).B)el (X—oe ), i22;
(oo -

{{(lu(c), L) if (1,00, T (dDel (Fwed )}
7, otherwise '
iz2;

[(S—ee) -

{i(lu(c), LM if (1,c), I (el (Z—ee )} ’

&, otherwise

iz2.



(4)

u(—-1'~—) “_'T'_’ ”_'T'_)'
1(—-1-—) 1(—-7*-') {(5,5,8): 5eD} 5

I( _'T'"’ 1(—-T~—) l(—-T-—)-

(_'T'_) L) = 1,0 -

(1), TN} 5

1(—-7-—) ”_‘T'_’ I(—-T-—) {10} 5
('-*r—) I(—-T-—) I(—°T-—)-
@ if T (c)=I,(d)

{Z,otherwisc .

(=g = 1(—-T--) 1(—-1-—)-

u(_.T._d) Iu(—-To—) =

{{ZU(C)I» if 1,(c)=1,(d)= lu(e)}
otherwise

where if 4 or e is missing from one of these atoms, we treat
it as ¢ for purposes of the valuation;

[,(Fo9e—) € 2P0, 2 2;
yl
I (—°T°—) {(8,6.6": (5,881 (_.T‘.—)} iz2;

I (—-yT-—) = [(5,8',5): (8,8',B)e Iu(—-yTi-—)},.az

I ("—-T-—‘)= (8,8,8): (8,8,8)e I (‘—-Tvl)} i22;
—*r—)- 1(3,8"): (8,8'.I,(che (—-T'—-)} iz2;
(-'T°—) {(8,8): (8.1 (c).8)e 1 (-'r—)} i22;
(—‘T,’—) {(8,8): (I(c),0,8)e 1 ( —*T'—)] i22;
u(—*T'—)- {(8.,8): (8.3.1,(c)el (—-T-—)} i22;
I (—°T'—)-{(88) (8,1,(c).B)el (—'T""“)] iz2;
u(—"|"-' = {(8,8): (I(c).0.8)e I (—'T°—)l iz2;
I (—'T'—)- {8: B.I,(c) L (d)e (—'T'—)l iz2;
(—'T;'—) = {8: (I,(c).8,1,(d)e I (-—-T'—)l iz2;

I (—odrl-—) {8: (I (e).1(d).B)e I”(_.,,T-._)] i22;
I“(L:Ti'—c) = {8: (8.1(c).1 (Ve IU(E—;TI.—*)], i22;
—-T-—")- (8: (I,(c).8.1 (cNe ] (E-T-—‘n i22;

I (—-Tr—)_ (8: (I ()], (c).8)e I, ( yTo—} iz2;

113
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1,( ‘_.dTlo—c) =
{mu(c). 1,(d), L), if (I (c), I (d), Iu(e))elu(‘—*YT;J)} sy

&, otherwise

c d
1, i-—-) =

{{(Iu(c). I(d), b ()}, if (I (e), 1,(d), lu(d))elu(‘——-yTi-—‘)} .
&, atherwise

{{(lu(c). 1,(d), [N} if (1,(0), 1,(d), T (el ( ‘—*Ti-—‘ )} -y

Y sl= 2,

@, otherwise

IL,(“—-T;-lj )=

{lﬁu(c), 1,(0), LN, if (100), L,(e), 1 (el ( "—-T.-—‘ )} o
yli S, 122

7, otherwise

Iu(c—oTio—c) =
{{([u(c), 1,{e), 1N}, if (I (e), 1,(e), 1 (D)l ( L.Ti._z)} i3
b4 PRE

&, atherwise

That concludes (mercifully) Definition 9.

We now proceed to the definition of that general form of “relative
product” which we shall use for the extension of I, to molecules. (There
are other options for the notion of “generalized relative product™ it de-
pends on how one wants to order the object labels and constants under
molecular bonding. The definition we are about to give conforms to the
ordering convention for bonding laid down in Part 1.)

Definition 10. Let R(x, ..., Xp e x) and S(y,, ..., ¥, . ¥,) be rela-
tions with m, 21,1 <j<nand 1 < k< m. (We emphasize thatj = 1,
j=n, k=1,and k= mare all allowable.) The generalized relative product
(GRP) of R with S (order of factors matters here) denoted by R % " S,
is defined to be the relation {(s,, ..., 5, s 7}s - Fogs Tioyp wees T Sppo ooer $ ):

= 1] [ s , Fps < r)ER& (s, s 5 hisy oo S ) € §i}1.%%

Note: if j = #, and # = 1, this is the standard basic definition of rela-
tive product.

Definition 10 is now our device for extending I, from atoms to
molecules: GRP does the job.

Definition 11. I, for molecules. We proceed by induction on the
number b(M) of bondings used to construct the molecule M. (Note
that b(M), the number of bonds, is different from #(M), the bonding
number defined in Part 1) If b(M)} = 0, i.e., if the graph is an atom,
the value of I, on M has been prescribed in Definition 9. So suppose



b(M,) = £ + 1; and suppose we have defined I (M) for all M such that
b(M) < £ Now suppose M, and M, to be molecules such that max(b(M,),
b(M,)) = &; ler M = ptEand M, = 2—p_; and let M,=M 1B M, =
MM, where 7 = #(M ). We define: I,(M) :=I,(M) * ., (M),
where the bonded x-bearing hooks are at the j-th position in M, and the
k-th position in M,.16

An answer to the question “What happens to constants when we do
this?” is in order. A careful examination of Definition 9 shows that in
assigning I ;-values to atoms that are eligible for bonding (i.e., that have
one or more open hooks), we take into account the effect of constant-
bearing hooks relative to the I ;-assignment for the full-adicity atom
of the same group (dyads or triads) bur assign a relation of arity = the
valency of the atom in question, maintaining respect for the order of
labels. The application of GRP vis-a-vis bonding then propagates this
“effect of constants” through the molecular hierarchy.

Definition 12. A sentence is a WFBG all of whose labeled hooks (if
any) are occupied by constants.

Note: We remarked in Part I that nullecules, in particular, are to be
regarded as sentences. In the case of atomic nullecules, the reading of
them as sentences is pretty clear: these are atoms whose every hook is
occupied by a constant. Any one of them, read as a sentence, should say
that its constants, in their prescribed order, form a tuple that satisfies
the relation that the atom represents, under whatever interpretation I,
is under consideration; and with respect to that I, this claim may be
true or it may be false. With respect to bonded nullecules, the situation
is slightly different. How could two molecules bond to form a nulle-
cule? Clearly, they would have to bond along hooks bearing an object
label x, where that hook is, for each of the two items to be bonded,
the one and only remaining open hook. Thus, given our GRP procedure
for interpretation of molecules, it must be that each of the two mol-
ecules being bonded describes a set, namely, some subset of whatever
domain D we are looking at. On the one hand, our GRP assignment
to the bonded molecule, i.e., the nullecule, is automatically 0. On the
other hand, there may or may not be a common element of the two sets
in question, which would yield a nonempty GRP if either of the two
items to be bonded had another open hook. Accordingly, we are mo-
tivated to ascribe the following sentential significance to the nullecule
M, B M, [;(M)) n[,(M,) # o. (Again, for a given M, M, and [,,
this may be eicher true or false.)

The truth conditions for sentences, relative to a given U-interpreration
I,,» now consist in

(1) the conditions for atoms laid down in Definition 9,

(2) the stipulation made regarding non-atomic nullecules in the pre-
ceding note, and

4"

SNNd[ED) 318IIPal ] JO UOHE[TLIC,] 2ANEWAN[Y uy : diydeiferng

dOUId ] NO dVNIWHEG AUVNITJIDSIAUALN]

157



TRANSACTIONS Volume 51 Number 2

158

(3) for WFBG sentences formed using conjunction, negation, and
quantification, the usual Tarski truth conditions that can be found dis-
cussed in derail in any standard rext on the basics of mathemarical logic
(e.g., Enderton 1972 or Mendelson 1964).

d
For example: 1f G = “—= then G is true in U relative 10
1, if [,(c) =1 ,(d}, and is false in U relative to I, otherwise. (Notations:

“UlG” for the true case, “UFG” for the false.) Again, if G=

%(1)

then UFG if and only if chere is an element 4 of D such that (4, I (c),
1,(d)} is not in the relation R & 27* D:D for which

1 (epe) <R
y

Part III: Three Theorems

We can now establish a precise form of the “Peircean Non-Reduction
Thesis” (NRT) for a fairly wide class of formulas. Moreover, we shall
verify the other half of the classical Peirce thesis, namely, the “Rela-
tional Completeness Theorem” (RCT), for the atoms, a result thac is
in Herzberger 1981 and Interdisciplinary Seminar on Peirce 2011,
though of course not in the form and framework of the present paper.
We begin with RCT.

Theorem A (RCT).

Let U be any universe of discourse, and let R be any n-ary relation
on the domain D of U, # 2 4: R & 20+~ Dintimal Then there exist a
U-interpretation I, and a molecule M of valency = adicity = 7 such that
I,(M)=R.

(Note: since all molecules are constructed from atoms via bond-
ing, and all atoms are at most triadic, RCT is clearly a statement of
“Peircean relational completeness.”)

Proof of Theorem A. We shall give the proof explicitly for the cases
5 = 4 and n = 5; the handling of cases 7 > 6 should then be entirely
clear. So suppose, first, that we wish to obrain R, where R € 2°xP2x,
by molecular construction. D being infinite, there are at least as many
elements in D as there are 4-tuples in R. Therefore, following the lead
of Herzberger 1981, we can establish a 1-1 correspondence p, >0, be-
eween the 4-tuples p, = (r,, r,, 7,5 7,,) of R and certain elements 6, of
D, where i ranges over an index set of cardinality card(l) = card(R)

< card(D). Break each element p, of R into its “left half,” {(r,, 7 )} .



L oo g
and its “right half” {(r,, 7))}, . . Select a pair ka, and uTkx of

eriadic atoms, 1 < &, < £,, and choose any U-interpretation I; such that

. z z W,
Iy( _;le_) ={(r,.r,:8)), and Iu(_.u o) =Brpr )l

1}

.

Then, clearly, we have

X 6,2~ w
WO -

({(ru’ru’a:)}ul)* X} [[(Bl’rij’ri-l)}) =R

To deal in a similar way with R € 20xP*PxDxD we merely need to

insert a triadic atom ¥ in berween the sort of pair we used for
the 4-valent construction, split our 5-valent relation into a left side,

a middle singleton, and a right side, and proceed as before. In detail:
Choose

x z z z Z w
B O P

with £, < £, < &;; and, letting T4>6, be a 1-1 correspondence between
{6,: i € I} and the 5-tuples T, = (r,, 7, r,,, 7, 15} of R, split each 7, into
a “lefr piece” {(r,, r, )}, . » a “middle piece” {( 7))}, ., and a “right piece”

{(r,, r .., First, choose an [, so that

b}

L) = () (=) - (@Bl

Iu(z_. ._W) = [(ai'rwris)]iel
an u .

z 6,z,~ w
Q = —ese——"—epe—
Next, form: ! kaz uTk: s
and observe that .
IU(GI) = {(Bl’rlj’ai)}ie[*i.l{(Si'rid’rii)}iel =

{(ai’rij’rﬁ'ris)]iel

X o9erl
Finally, bond kal

to @, to form . w
A S N

and cbserve that
1,(G,) = {(ril'riz'at)]iel*i.l[(Si'rli’rl‘!’rls)}iel =

[(ril’ril’rﬂ'ri4’ri5)]iel =R
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The extension of this procedure to arities 2 6 is now clear: we just

z IJ z
keep inserting additional atoms of the form k, |, a being some
new object lecter for each such insertion. Theorem A follows. a

Remark. We did not say, in the above proof, how in a given construc-
tion the function I, should be defined o1 constants. That is because it
doesn’t matter: make that part of the definition of I, any way you please;
the argument is independent of it. With a careful choice and index-
ing of sequences of pairs, triples, quadruples, etc., of triadic atoms, we
can in fact arrange for 2" different instances of [ each of which is
compatible with a construction-from-triads, using our carefully chosen
and indexed atoms, of all the members of a given countable set of Rs
of arities 2 4.

Theorem B (NRT for 3-valent open WFBGs).
(1) It is not possible to construct a molecule of valency = 3 (and hence
not one of adicity 2 3) using only monadic and dyadic atoms. As a
result, there is no universe of discourse U, interpretation function I,
and molecule G constructed using only monads and dyads, such thar
[,@=R,Ra relation of arity 2 3.

(2) Let the teridentity or 3-diagonal relation {(d, 4, d): 4 € D} on
2 domain D be denoted by the more compact label “7ér”; and let ™
denote its complement in D, i.e., := D x D x D\Zer. Further, lec @ be
an open WFBG that contains only molecules of valency < 2, and with
a(@) = ¥(@) = 3. Then G cannot express either 7er or Ter or in a domain
having at least 2 elements.

Proof. For (1): Given a WFBG G, we denote by (@) the adicity of
G, and recall that v(@) 2 a(@) for all G, v(@) the valency of G.If@,, @,

are any two molecules, it is rather obvious (and routine to verify for-

mally by induction on the number of bondings) that if G7=—G, isa
bonding of G, and G, then V(GH==G,) = v(G )+v(G,)-2. Consequently,
if both G, and G, are of valency < 2, then so also is v(G2==a) < 2.and
this clearly implies (1},

For (2): We proceed by a straightforward induction on the construc-
tional complexity of open WFBGs, which we define as follows:

1, if G is a molecule;
1@):=dyt, if 6 -(H);

max(y(H ) y(H))+1, i 6 -

Base step: (@) = 1. Here G is a molecule, and itis obvious that I,(G)
cannot be 2 3-adic relation since v(@) < 2. So G cannot even be a can-
didate to express Ter.



Now assume that we know that for y(G) < 4, G is not a counterex-
ample to (2).
Induction step: y(@) = k + 1.

Casel:G-.

There are two subcases.
Subcase 1a. One of H,, 1, is a sentence true'® in U, and the other

has its I,-value = 7r or 7er. Bur since both y(t1,) and y(t1,) are < 4,
it follows from the induction hypothesis that this case presents no
threat, since whichever of H »» T, is ot a sentence would have to satisfy
v(f)=a(H)=3,i=1or2

Subcase 16, Otherwise. Then neicher ] nor t, can have valency
3, since otherwise we would be in Subcase 1a. The valency of G must
therefore be split between H, and H,; say, v(H)) = 2 and v(11,) = 1. Now
suppose that we have

X Z
Ty(H, ) = Ter= 1,031,

Recalling that card(D) 2 2, let §,, 8, be distinct elements of D; and
notice thar I (H,) must be the ordinary binary identity relation on D,
while [,(H,) is simply some subset of D. Clearly, it cannot be the case

that I,(t1,) = @. But neither can [ (H,) be non-empty; for suppose, e.g.,
that 8, € I(H,). Then (8, §,, 6,) € [,(H, H,), with §, # §,. Thus,

again, cannot in fact have 7er as its [ -value. The argument

is entirely similar if we assume I,(G) =, except that there we would

observe that I (H,) would have to be all of D x D.

Case 2: G- @ Suppose it were the case that

[,(@) = Ter = IU(L;T-._Z)' Then we would have

Iu(@) = Iu() =1,() = %er. But y(H) = 4, and this contradicts the
induction hypothesis; so again, it cannot in fact be the case that 1 (G) =
Ter. Similarly if we assume I, (@) = 7er, and the proof is complete. O

Theorem B' (NRT for Quantifiers) =

What about quantifiers? Our final theorem deals with chat question,
in that we shall argue that Theorem B almost holds for WFBGs that
are quantified but in which no quantifier acts on more than two occur-
rences of its target object label. In whar sense are we using the qualifier
“almost”™? In Theorem B, the only demand we made on our “universe”
was the very minimal requirement that card(D) = 2. Here we find it
expedient to return to our normal semantic environment featuring a
full universe of discourse in which the domain D satisfies card(D) > N o

111

STND[E]) EIIP21 JO UONE|NIIO] SANEWIAY uy : diydeiSeiag

014 ] NO YVNIWHG AYVNITJIDSIQUALN]

161



TRANSACTIONS Volume 51 Number 2

162

Further, we cannot apply the same straightforward inductive strategy as
in our proof of Theorem B; this is simply because existential quantifica-
tion does not distribute through conjunction.

Some preliminary conventions are in order. First, in connection
with our restriction on the quantifiers: we regard a quantifier Q as a
multivalent operator that acquires specific valency only with respect to a
WFBG and a target object label. Thus, we say that Q is n-valent with
respect to the pair (G, x), @ 2 WFBG and x an object label having exactly
n open-hook occurrences in G, if Q is either ¥ or &,

Next, it will be convenient to have a special notation for the WFBGs
we consider in what follows. If G is an open formula, we shall indicate
it by a rectangle with a label, thus:

@.

If M is a molecule occurring in G, we shall denote it by a “roofed

rectangle,” thus: [J. And ifan open hook occurs in M we shall indi-
cate it by a “bullet”: » . Thus a partial representation of an open formula
with a pair of open-hook-bearing molecules in it would appear thus:

T 1 G.

If we now add quantifiers, it will be assumed (as is a fundamental
guarantee in predicate logic) that G can be taken to be in prenex normal
form, which for us means a sequence of mutually distincr quantifiers
applied to an open WFBG. Thus, in our abbreviative notation, a quan-
tified WFBG G would be skeletally represented by a diagram of the
following type:

—i %

<
Q,Q-Q
where G, is open and Q,, ..., Q, are quantifiers.

The following definition is key for our argument on behalf of Theo-
rem B:

Definition. Let G be a quantified WFBG in prenex normal form,
and let M be a molecule of G. By the Q-orbit of M in G we mean the



set of all those molecules in @ that are linked to M by a sequence of
quantifications, together with the linkages and “dead-end quantifica-
tions” (if any).

Here is a picture of a sample Q-orbit, with M =, say, T inG:

£(5) ¥(4) i3) w2 a(l)

(Notice that in this example, some of the molecules in the “open ker-
nel” of G would have valency > 2.)

We shall agree that if M has no such linkages to other molecules,
then it, together with any quantifiers acting on it, is its own Q-orbir;

e

Observe that any two Q-orbits Mg Mg, of G are either disjoint or
identical. One further terminological conventlon is useful:

Definition. By a /-orbit in @ we mean the Q-orbit M, of a mol-
ecule M such that no molecule in M, other than M iself has an open
hook, and M has exactly one open hook. (Thus, all other open hooks
present in molecules of M, in the open kernel G of G have been closed
by quantifiers of G.)

Example of a 1-orbit:

M
y2)  x(1) z3) .

The following simple proposition will figure crucially in our im-
pending proof:

Orbit Lemma. Let G be a quantified WFBG in prenex normal
form, such that a(@) = v(@) = 3, all molecules in the open part G, of G
are of valency < 2, and all of the quantifiers acting on G, are of valency
< 2. Then @ contains at least one 1-orbit.

Proof. This is a straightforward consequence of the restrictions on
the construction of @: if one of the valency-providing molecules, say
M, of @ has valency 2 in @, then no linkages are possible for M, since
otherwise it would have valency 2 3 in @ ; so M = M, and the remain-
ing valency-providing molecule M' in GO must bc part of a 1-orbit. If,
on the other hand, all valency-providing molecules of G are of valency
1 in @, at most two of them can be linked in a single orbit, since none
of them can have valency > 2 in G; and then the remaining one must
be part of a 1-orbit. 0
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Theorem B'. Let G be as in the preceding lemma, and let U be any
universe of discourse with card(D) infinite. Then for any interpretation
[, we have [ (@) & {7er, Ter}.

Proof To begin with, it’s clear that we may concentrate on 7er: if

I,(@)= Ter, then 1, (@) = Ter;and @ can be put in prenex normal
form by the simple expedient of changing the outermost quantifier Q

to its opposite, Q, and then slipping the negation oval between @ and
the rest of G, etc. until G, is reached. So, suppose it were the case that
1,(@) = Ter. Let {M g, -y M, o} be the set of all Q-orbits of G; by
the orbit lemma, one of these, at least, is a 1-orbit. There are just the
following two possibilities for G: a single 1-orbit along with an orbit
containing two open hooks and also some number (possibly zero) of
completely quantified orbits, or else three distinct 1-orbits plus, pos-
sibly, some fully quantified ones.

The advantage of orbiral separation of open-hook labels is thar it
allows one to analyze the truth-value relarionships of subformulas of G
without having to worry that a specific choice of D-values art the open-
hooks in one orbital component will of itself force (via quantificational
linkage) the choice of a D-value at such a hook in a different orbir.
Influences berween different orbits depend only on the purely propo-
sitional structure of G, We pause Yo illustrate this, and also to provide
a hint why the rest of the argument goes as it does, by an example.

Suppose @ were the following WFBG (strictly speaking, WFBG form):

K
V oV NN
x(4) w(l) 73 i(2)

EXHIBIT A

For what we shall say about this, (¢, *, *) can be whatever triple from
D x D x D you please, subject only to the assumption that G is true
relative to I,

Note. There will, in general, be some “closed orbits” in @, with all
available hooks quantified. We have not indicated any in Exhibit A, but
for any such orbit there will be some finite number of possible assign-
ment types for its molecular forms. Thus, for example, if

M, M,

x(2) ¥



is such an orbir, one possible assignment type for its molecules, for a

g;vGe'n I, would be 3xM,(x) for M, and JxVy—M,(xy) for M,. Then
i =

) x x

22y, with 7 as M, and __.'k_'y as M,, @' may
be either true or false relative to I, depending on whether x can have
the same value for satisfying both conjuncts. In the discussion that fol-
lows, it is to be assumed that whatever assignment type has been cho-
sen for such an orbit (of the finitely many such types available for thac
orbit), that type is such as to contribute to the satisfaction of (i.e., not
prevent the satisfaction of) the overall formula G(s, *, *).

As has been hinted at in the above note, it will save some space in
dealing with assignment types (though at the expense of pictorial clar-
ity) to discuss Exhibit A in terms of linear, rather than betagraphic, no-
tation. Orbits, to be sure, are clearer from the betagraphic presentation.
Linearly, it says this:

Vx yVz Jw[-M (s, x) & M,(x, w) & M,(, ) &
—(M, () & M(y, 2) & M((*, 2))].

We consider two possibilities for the 1-orbi, in this example.

1. It is the case that VxV w[M (*,x) & M, (x,w) & M,(w)]. Then to
ensure the correctness of G(s, », *), the 2-orbit molecules can respond
with any of the following:

Ia. ﬁ3_}'1\/1_,’(',';;0 & aszMs(y,z) & Vz—M,(*,2);
16. ~IyM, (o) & V2V y=M,(,2) & VzM(*,2);
Ie. ~IyM (o) & VzVy " M(p2) & Jz-M(*,2).

2. Itis the case that = JwM (). Here again, the 2-orbit has options
to secure (e, *, *):

2a. -'a_yMj(ﬂy) & VszMs(y,z) & VZMG(',Z);

2b. —'ByMs(', Y & V_szMs(y,z) & —leMG(',z);
ete.

Thus, even though the G of exhibit A is a fairly simple WFBG form,
there are a number of combinations of truth-value assignments thac
“work.” Nonetheless, there are only finitely many, as is of course the
case for any such G-form."” How many? We do not have to compure
this number as a function of @ — it may be small, it may be large,
depending on @ — we just have to know thar it is finite, which it is.
Let E(G) denote the set of all such assignments (“E” for “evaluation”),
with card(E(@)) := ¢(@). Each a € E(G) can be split into a pair a, a,
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of subassignments, where q, is the part of a pertaining to the 1-orbit
M,.q of @, and a, is the part covering the rest of G. (Again, refer to
Exhibit A and the remarks following it, where we have given a partial
listing of such subassignments.) Now back to the general G posited for
the theorem. Let x, 3, z be the object labels attaching to the open-hooks
in G, with x atrached to the open hook of M 4 let an I, be fixed; and
let a,, @, ..., a(G) be all the assignments that can possibly correspond
to triples (8,, 3,, 8,), (8,, 8,, 8,), «0s 8. By 8. respectively, all
G(s, s, *)-correct assignments relative to I being accounted for. (These
eriples must indeed satisfy @ relative to I, since we are assuming I,(@)
= Ter.) Since D is infinite, there is a #* € D different from all 8, ...,
8, and this 4* must also be such that (4% &% 47 satisfies @ with re-
spect to I,. Moreover, it must do so under one of the assignments a,; ...,
@ say under a. Taking a, then, as the truth-value assignment that
accommodates (&, §, 8), split a into @@, as indicated above, and re-
place 8, by d* in the 1-orbit M, g of @. Then nothing in the truth-value
distribution changes from @ with (5{, 5}., 6}.) substituted for (x, 3 2) 1o
G with 6, replaced by d* just in the M, o orbit: the interaction between
a,, and a, in rendering @ true is independent of exactly which of these
two triples is occupying the open hooks of @. Since 4* # 8, we have a
contradiction from which the theorem follows, @ having been an arbi-
trary WFBG with the indicated properties. O

Concluding Remarks

(1) Once we allow quantifiers of G-valency 2 3, theorem B' collapses, as
is only to be expected. (Note the remark in Herzberger 1981, thar the
NRT cannot survive contact with the full resources of the predicate cal-
culus.) The following expression for Zer, using a predicate-logic form of
Kempe's™ “triple junction operator” (for us, just a quantifier of valency
3 relative to @) is doubtless the simplest example of this:

X Yy z

1 1 ]

W

(2) The trearment of quantifiers as multi-valent operators taking
specific valencies only in context does not seem widespread in the re-
lated literature, although it is implicit in Burch 1991, courtesy of his
“HOQOKID” operator. That is a little puzzling, since it seems to us a
fairly obvious move. We suspect this may be connected with a ten-
dency to view Peirce’s “lines of identity” as being only about lines of
bi-identity, thus failing to take into account ter-identical (or higher)
junctions.

(3) Some words might be in order about our requirement that U
be such that card(D)2N,, everywhere except in Theorem B. First, it



is by no means evident that this requirement is actually necessary for
Theorem B'?; but it is convenient for the proof. Second, we don't think
Peirce would have objected to that assumption, since there are indica-
tions he would have insisted on infinitude for anything to be viewed,
logically, as a “universe.”

(4) Finally, for what sort of thing, beyond the arguments in this last
section, might our approach prove useful? As hinted at in the Preface,
we believe it should have descriptive value in areas where “small things
get bigger via bonding, branching, and accumulation”; and that is quite
a few areas. To repear, our current focus of interest in this regard is on
questions about neurons, in themselves and interactively, and how best
to picture the relations involved in such things in as simple yet infor-
mative a way as possible. The molecular approach to relations would
seem to be rather well-suited to such a purpose, as it might well also be,
on a much larger scale, to the representation of various social interac-
tion phenomena. One should also remember the foundational role of
graphical relational logic in Semeiotic.

It will no doubt occur to some readers to ask: since we are altering
the treatment of quantification from Peirce’s “lines of identity” to our
“projective” notation, what advantages do we feel this change has? They
are, we propose, at least two-fold. First, there are no longer any prob-
lems of sorting out the nuances of cut-crossings. Second, our treatment
facilitates the simplification of proofs for such things as the status of
“non-reduction” vis-a-vis quantification (see Theorem B').

Our suggested Betagraphic approach to bonding and relations as
a foundation for studies of semeiosis may provide a new and easier
technique for representing the various interactive neural and cogni-
tive systems currently being explored in neuroscience, psychology,
and particularly the emerging field of neuroesthertics. The application
of our representational framework as a form of diagrammatic model-
ing?? promises to offer some additional insights into Peirce’s ideas of
diagrammatic thought as a genuine depiction of “moving pictures of
thought,” “moving perception,” or “reasoning in action.”

Further, in regard to the foundational role of graphical relational
logic in Semeiotic (Peirce’s Science of semeiosis), we note: the impor-
tance of this role can be appreciated if we recall his basic notion that
every sign (in the sense of an instance of semeiosis) necessarily involves
a relation of the triadic type. Thus his study of semeioses presupposes
the logic of relations. The essential role of triadic relation types in se-
meiotic is well illustrated by remarks such as those found in the Col-
lected Papers (for example, see 1.480, 1.540, 2.242, 2.274, 4.447); in
those locations, and in similar discussions, Peirce indicated thar a sign
(in the sense of representamen) is a representation of an object to an
interpretant. Here Peirce was describing a situation in which there are
three items—object o, representamen 7, interpretant i—participating as
relata in a relation T of the genuinely triadic type.
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Such a relation as T can be de[;icted in Betagraphic or Beta EG;
or it can be described in linear notation, where it would appear, in a
propositional function form, as T(o,7) in which T is a genuine triadic
relation involving three relata: Object o, Representamen 1, and Interpre-
sant i. T is understood as the relation that describes the fact that r
represents the object of discourse o to the interpreting function 7. At
this level of abstraction, T is capable of assuming further subrypes of
triadic semeioses, such as Icon, Index, Symbol, Dicisign, and so on
throughout the full list of subtypes explored by Peirce. Moreover, o,
r, and i may acquire more definite specification in terms of concrete
cases: for example, “Smoke ar grid location 2 represented the presence
of fire at grid 2 to Ranger Tke watching in the tower” (here T is further
specified as the semeiosis sub-type Index, wherein for this concrete case
it is furcher specified that “fire ar grid 27 is o, “smoke at grid 27 is 7, and
i is Tke’s knowledge thar “smoke is caused by fire”). A nonconcrete or
general description of an indexical sign would be expressed as “There is
2 triadic relation T{(o,#) wherein ris interpreted as the effect of a cause
0, i being the interpreting function ‘o causes r.” We could add existen-
tial (or other) quantifiers for some or all variables in this expression, in
cither a more generalized form, or as in the concrere case above, thus
(ffire at grid 2, g smoke at grid 2, ¢ Smoke is caused by fire):

Axdydz {x=f & y=g & z=¢ & Tix.p2)].

A similar treatment for other types of semeiosis may be constructed

using either Betagraphic or Beta EG or linear predicate logic notation.
What would the “Ranger Tke” example look like in Betagraphic? In

its most general form, with relata o, 1, £, we would simply write, say,

o .
—8 Tz.—l
r

In the more specific case of smoke, fire, and Ike, with the indicated
- - p .
quantifications, it would appear as, say,

x(1)

All the rules and theorems available in any of the three mentioned
systems for logic of relations, with bonding made explicit, will guide
the principles of semeiotic. A classic example of one such principle
of semeiotic is “Every sign [semeiosis] must be interpreted in another



sign [semeiosis].” This is a case wherein Peirce applied NRT within the
Logic of Relations (no matter whether expressed as Betagraphic, Beta
EG, or linear predicate calculus) to the flow of sign action, or Semeiosis.
The supporting argument for this classic example of a result obtained
in semeiotic, by using the logic of relations, may be outlined in the fol-
lowing manner:

{prior resulr): NRT is correct, which we take as a working hypothesis
of semeiotic.

(#): Any further interpretation of a prior semeiosis (which will incor-
porate a triadic relation type) will be executed in a communica-
tional event (another semeiosis).

(#): All communicational events are semeioses embodied in triadic
relation types.

(#ii): Thus, any further interpretation of a prior semeiosis (a triad)
must be embodied in another semeiosis also employing a triadic
relation type (otherwise NRT would be violated).

The expression of semeiotic in predicate calculus may look a bit
foreign at first sight. That feeling is perhaps due to the role of bond-
ing not having been noticed or overtly used in those circumstances. In
Betagraphic (or Beta EG) bonding operations are more prominently
employed and acknowledged. It is a fact that bonding is equally, if im-
plicitly, present and important in algebraic forms for expressing the
logic of relations. Bonding operations make especially clear thar quan-
tification, no matter where employed, is a valency-involved procedure.
This recognition may clarify the role of the logic of relations in the
foundations of Semeiotic in a way that is useful for scholars who prefer
working in the linear mode of the predicate calculus.
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NOTES

1. Thomas McLaughlin (lead auchor), Elize Bisanz, Scott R. Cunningham,
Clyde Hendrick, Levi Johnson, Kenneth Laine Ketner, and Michael O'Boyle.

2 On Peirce’s use of “weld,” see Peirce 1992 (1898), 42,91-92, 95, 158, 159,
160.

3. A child’s creative construction set involving wooden or plastic hubs and
links; it bears similarity to sets used to construct models of molecules in chemistry
courses.



4. Burch 2011 is very helpful about this.

5. Peirce, ever the scientist and fallibilist, encouraged future research and im-
provements for his basic approaches in Existential Graphs, especially as applied to
Semeiotic: see CP 4.510-529 (made public in the Lowell Lectures of 1903) and
CP 4.573-584 (made public before the National Academy of Sciences, April 1906
meeting in Washington, D.C.).

6. In connection with double-oval removal, we mention the following impor-

tant points: (/) itisallowable, for the removal of O , for the double oval to be crossed
&y a line (o lines) of quantification, but no# generally allowable for it to be splir by

one. Thus, for example, i) = G 0} ;s OK: both antecedent

and consequent say “for every x, we have G.” But (@’(") = G

is not OK; it says “if there is an x such that G, then for every x, G,” a claim that
is more often than not false. If we replaced (#) by () in this last bad implication,
we would ger a correct implication saying “if for every x we have @, then for some
x we have @.” As a practical matter, it is safest to simply avoid removing a double
oval spliz by a line {or lines) of quantification. (2) Under no circumstances may

be replaced by cither @ T or G @ , H being 2 WFBG.

7. In this instance, “occurrences” refers not only to open-hook occurrences,
but also to occurrences on bonding tags and/or in quantification. Thus, in par-
ticular, we may perform a change of variable in a sentence, an operation that is
sometimes useful.

8. Recall from note 6 that we are not permitted to remove a double negation
if there is a WFBG intervening between the two negation ovals. Again, the only

x(n)

intervening mark(s) definitely not interfering with removal of ™~ would be one
or more lines of quantification crossing both ovals.

9. See, e.g., Mendelson 1964.

10. In the event that x does not have any open-hook occurrence in H eicher,
(1) is a “vacuous quantifier,” and (since it then has nothing to attach to in 1) sim-
ply does not appear in the graph. Burt for some general commentary on vacuous
quantifiers, see paragraph 2 of the Postscript.

11. See Burch 2011 for an intensive treatment of the Peircean line of identity.

12. See Interdisciplinary Seminar on Peirce 2011.

13. The assighments to atoms in clauses (2) through (4) depend only on the
indices (subscripts) of the atoms, not on the particular objecr labels that may be
represented by x, y, or z. Thus, e.g., Iu('l_x') = [u('i_xl) forall 4, j, & Also, as is cus-
tomary, we denote the empty set by “o.”

14. Both here and in (2) above and (4) below, we have cases in which the atom
in question is a nullecule, and we have said in Parc [ that these are to have the sta-

c d
tus of sentences. So, how should we understand, say, o= or —*%— when read
as a sentence, apart from its function as a name in the present definition? (This
“name function” relative to I, cannot interfere with what happens under bond-

[
ing, since nullecules cannot bond. "' should be read as “c is in the universe,”

d . . = M .
S—ee—" should be read as “(c, d) is in the relation ~— °% ,” and similarly for all
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S ape—=
other “constant nullecules.” (In particular, we would read dT’ , 45 4 sentence,
as “c = d = ¢ with a naming value of o in L, if this is false in U under [,..) Most
of these sentential readings, of course, have their truth-values dependent on U
and 1.

15. Notice thar here, when we speak of an “n-ary relation” and denote it by
R(x,, ..., x,), we are referring by # to the valency of R, were it presented graphi-
cally, as we shall shortly be doing.

x 6!Yl" x
16. Bonding may result in a molecule, —*%~ 'k , say, thac under some

interpretation [, yields via “-evaluation in D a pair such as (10, 7) as part of the
relation it names; in such a case, one x is delivering a value of 10, the other a
value of 7. This may, understandably, be disconcerting to some readers. To find
out how this happened, one need only examine the reconstruction tree. If one is
too uncomfortable with its happening, one can make sure that the open occur-
rences of “x” in one of the items ro be bonded has been replaced by some other
object label prior to bonding, this withour disturbing the [;-assignments. (In our
example, this question only arises when y # x.) Indeed, we can make sure the
whole reconstruction tree is relabeled to prevent this kind of awkwardness in the
semantic reading versus the syntax. (Note: 1, assigns the same relation to both of,

% ._x’ :’_.._x'
say, ~ *% and T ;see note 13,

17. Since bonding deletes the common object label of the bonded hooks; here
the result of the bonding has no occurrence of that or any other label on an open
hook.

18. By a sentence being true, or true in D, we here, of course mean thac it is
teue in the universe U = < D, 2%, ... > under an interpretation I, . But here only
card(D) 2 2 marters.

19. Relative to a given form @(s, ¢, ), quantificational linkages may exest in-
Auences berween different molecules in the same orbit. E. g., JyM(e, y) may be true
for a given [, value of *, bur if the existential quantifier links M to V2M'(y, 2),
it may be that no y that works in M also works in VzM'(y, 2) for chat value of *,
though under some other choice for * we could have Iy(M(e, y) & VzM'(y, 2).
Nevertheless, the total number of possibilities for G(, ¢, *)-satisfaction (i.c., as-
signments with such value-choices and linkage influences taken into account) is
finite.

20. For an excellent account of A. B. Kempe's work in its relation to Peirce,
A. Cayley, J. J. Sylvester, W. K. Clifford, plus J. Royce and his scudents N. Weiner,
C. 1. Lewis, H. M. Sheffer, and R. Eaton, see Grattan-Guiness 2002; see also
Kempe 1886.

21. It is worth noting, in any case, that what is actually critical for theorem B'
is the conclusion of the Orbit Lemma: both the 2-valent restriction on quantifiers
and the restriction on pre-quantificational molecular valencies can be dropped, if
we assume that our WFBG bas a I-orbit.

22. Recent works in image studies attracted to Peirce’s notion of diagram-
matic thought have led to a grave misunderstanding of Peirce by focusing on his
doodles and pen tests as genuine examples of his theory of diagrammaric thought;
see Engel et al. 2012. For Peirce’s account of diagrammaric thought, see Ketner
1984.



